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The synchronization of coupled oscillators is a paradig-
matic example of the emergence of complex behavior in a
dynamical system with local interactions. It is an ubiquous
phenomena in nature, where most of the systems present
a complex underlying structure. Much research has been
done in the last decades to understand the interplay between
dynamics and topology, obtaining successful results in
the inference of the structure from the response dynamics
[1, 2] and the prediction of the synchronization onset for
several topologies [3, 4, 5]. However, a general theory for
synchronization in complex networks is still missing and
there are many theoretical and empirical challenges to face
towards a complete understanding of the process [6, 7].

In this work, we study the dynamics of Kuramoto
oscillators in evolving complex topologies. We construct
functionally equivalent networks by constraining the distri-
bution of coupling strengths in the nodes in order to show
that the same evolution of the global order parameter in a
quasi-static process can be observed due to changes either
in the underlying connectivity of the network or in the
dynamics of the interactions. In this framework, an explicit
analogy between topological and dynamic transitions is
made by using simple mean-field arguments.

We consider that the dynamics of any sparse but con-
nected network is driven by a reduced effective coupling
strength between oscillators,Keff depending only on
the current coupling strength of the networkK and its
distribution over the nodes space. For instance, for an
Erdös-ŔenyiG(p,N), the homogenitiy of the network leads
to the scaled couplingKeff = pK, wherep is the global
fraction of existing edges, and the structural transition
occurs at a critical connectivitypc = Kc/K, ∀K ≥ Kc

(Kc is the critical coupling for the all-to-all limit case).
This result closely agrees with numerical simulations, and
the mean-field approximation [4, 5] converges to it for
large and highly connected systems. Beyond the prediction
of the synchronization onset, we suggest that the whole
evolution in the dynamic response due to structural changes
is analogous to the evolution of an static structure under
changes in the coupling strength among oscillators.

In order to quantify these effects, we use a model of net-
work formation that interpolates between Erdös-Ŕenyi and
Scale-Free [8] to generate networks with increasing aver-
age connectivity constrained to the given degree distribution.
For each network, we iterate the system towards the steady-
state for a range of supercritical coupling strengths (for the
all-to-all case), measuring the global degree of synchroniza-
tion with the usual macroscopic order parameters.

Figure 1: Steady-state of synchronization measured by the
squared order parameterr2 for both ER and SF networks in
the plane(p,K), with N = 103 nodes and a uniform distri-
bution of natural frequenciesg(ω) = 1/π, as fixed parame-
ters in each realitzation. Isochrome regions represent func-
tionally equivalent networks that preserve the global cou-
pling strength and the clear analogy between structural (in-
creasingp) and dynamic (increasingK) transitions is shown
for both ensembles. For the ER case, we observe the same
behaviour as in the all-to-all case, where a discontinuos
phase transition occurs atKc = 2, and the critical connec-
tivity pc(K) matches our theoretical prediction. For SF net-
works, the transition appears earlier and becomes smoother,
as expected [6, 7], but the studied analogy remains present.

This work presents some analytical and numerical
evidence on the close relation between topological and
dynamic transitions to synchronization. We aim to shed
some light on the nature of these transitions in real systems,
where one can usually measure their response dynamics,
but there is very little information about the underlying
topology, its evolution, and the specific local interaction
mechanisms.
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