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The dynamical evolution of opinions is frequently studied
using the voter model [1, 2, 3], which usually considers a set
of voters or agents supporting two opinions that change due
to the influence to all of them (mean–field level), in such
a way that a voter supporting an opinion changes it with a
rate proportional to the fraction of agents holding the oppo-
site opinion. The model exhibits a competition that ends up
after a transient time to consensus (if the system is finite),
the two possible absorbing states being equiprobable. This
macroscopic picture may change when the model is modi-
fied in order to account for more realistic situations, such as
the heterogeneity and the free will of agents.

The heterogeneity in the population of agents or units is
usually reflected in two different aspects, namely, in the in-
trinsic properties of the agents and in the structure of the in-
teractions. In the first case, agents may be differentiated by
its intrinsic rates of change between states, an extreme case
corresponding to a system of equal agents but one that does
not change opinion, i.e. a zealot. In the second case, some
agents are influenced only by some others in the processes
of opinion changing, the system being embedded in a graph
or network of interactions. Many studies incorporate both
ingredients to the voter model at the same time. First studies
focused on the influence of few zealots in the case of regular
networks, as well as in the case of all-to-all interactions,or
the so–called mean–field approximation [4, 5, 6]. In these
cases, the presence of zealots changes drastically the evolu-
tion of the system. If only one zealot is present, the system
approach much faster one consensus state, the one that cor-
responds to the zealot. When the number of zealots of differ-
ent opinions are the same, the system reaches a steady state
where the two opinions coexist. More recently, the effect of
complex network has also been analyzed, with similar con-
clusions [7, 8].

The voter model has also been modified to account for the
free will of the voters, leading to the so–called noisy voter
model [9] or Kirman model [10]. Now, the rate at which
one agent changes opinion not only depends on the fraction
of opposite voters, but on an intrinsic constant, the free–will
parameter. The main difference of the present model with
respect to the original one is that the free will avoids the
system from reaching the consensus states. Moreover, the
system undergoes a finite-size transition, by increasing the
free–will constant, form a bimodal behaviour, where agents
spend most of the time close to the consensus states, to a
unimodal one, where a non-negligible fraction of agents are
at different states [11, 12]. Once again, the presence of a
complex networks seems to respect the latter picture, while
the critical values are modified. Few studies cover mixture
of different agents in the context of the noisy voter model,
see [13] as an exception, nor the influence of zealots.

In this work, we analyze the influence of zealots on the

noisy voter model, focusing on the steady–state properties.
We also provide a deep relation between this problem and a
system made of heterogeneous voters. More precisely, we
consider three cases of interest: (a) one optimistic zealotin-
fluencing a sub–population, (b) two opposite zealots influ-
encing a sub–population, and (c) two opposite zealots influ-
encing different sub–populations of the system. The main
results are summarized in a phase diagram(a/h,N1/N)
wherea/h is the ratio between free–will and herding co-
efficients andN1/N is the fraction of affected agents. The
noise voter model hast two phases separated by an horizon-
tal line corresponding toa/h = 1/N . The latter line splits
into two ones in case (a) while it turns curved in cases (b)
and (c).
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Figure 1: Phase diagram for cases (a) (left) and (b) and (c)
(right).
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