
Biases and errors in the temporal sampling of random movements
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New sources of data available thanks to Information and
Communication Technologies allow to track the trajectories
of humans and animals at an unprecedented scale [1]. In
general, the continuous spatio-temporal record of the fol-
lowed individual can be described as a continuous-time ran-
dom walk [2], where arest time is associated to the endpoint
of eachmove. Identifying these different states is an impor-
tant statistical challenge [3], in particular because these new
sources of information and their exploitation have new limits
and biases [4] that need to be assessed.

One of these limits is introduced by the temporal sampling
of the trajectory. To reconstruct the real movement patterns,
one needs a time∆ between sampled points significantly
smaller than the characteristic duration of rests and moves
in analysis. This is often not the case. Here, we discuss
the effect of sampling on the measured statistical properties
of random movements. We describe trajectories as an alter-
nating renewal process [5], a generalization of Poisson pro-
cesses to arbitrary holding times and to two alternating kinds
of events, moves and rests, whose durationst andτ are re-
garded as independent random variables. The sampling time
interval∆ depends on the particular experiment and can be
either constant or randomly distributed.

We first consider the case of exponential distributions for
P (t) = t

−1
exp(t/t) andP (τ) = τ−1 exp(τ/τ), constant

sampling time interval∆, and constant speedv. In this case
we can obtain explicitly the distributionP (ℓ∗) of sampled
displacements and its first two moments, that also allow
us to quantify difference between the realℓ = vt and the
sampledℓ∗ displacement lengths. The observed distribution
Pℓ∗>0(ℓ

∗) can have a maximum, even if the original distri-
butionP (ℓ) is a monotonically decreasing function. When
∆ > τ , the result of the sampling is manifestly different
from the original exponential distribution.

We can also calculate the fractionFgood(∆) of moves that
are correctly sampled with a sampling time∆. This quantity
is independent of the spatial embedding and of our assump-
tion on the speedv, and represents an excellent measure of
the impact of the sampling. We note in particular that there
is an optimal sampling time of the same order ast andτ :
∆̂ ≈ 2

√
tτ .

We then extend these results numerically, and show that
sampling human trajectories in more realistic settings is nec-
essarily worse than the peaked scenario we solved, which
therefore allows us to define an upper bound to sampling
quality. Finally, we use high-resolution (spatially and tem-
porally) GPS trajectories [6] to verify our predictions on real
data. We find that for real cases, characterized by long-
tailed rest durations [7], the fraction of correctly sampled
movements is dramatically reduced. Constant sampling al-
lows to recover at best18% of movements, while even ide-
alized methods cannot recover more than16% of moves

from sampling intervals extracted from human communica-
tion data [8].

These figures suggest that, in the sampling of a trajectory
alternating rests and movements of animals or humans, the
assumptions often made that each measure correspond to a
rest and that an observed displacement correspond to a move
are intrinsically flawed. Further studies and rigorous analy-
sis of the empirical methods used in many studies are thus
necessary in order to construct solid foundations for our un-
derstanding of human mobility and animal foraging.
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Figure 1: Examples of trajectory sampling with exponen-
tially distributed rest and move durations, we show the case
of constant sampling interval (red circles) and the case of
random sampling interval (blue crosses) .
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