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The emergence and survival of cooperation is one of the
hardest problems still open in science [1]. Several factors
such as the existence of punishment, fluctuations in finite
systems, repeated interactions and the formation of prestige
may all contribute to explain the counter-intuitive prevalence
of cooperation in natural and social systems. The charac-
teristics of the interaction networks have been also signaled
as an element favoring the persistence of cooperators [2].
Here we consider the invasion dynamics of cooperative be-
haviors in complex topologies (in particular, scale-free and
random networks). The invasion of a heterogeneous network
fully occupied by defectors is performed starting from nodes
with a given number of connections (degree)k0. The system
is then evolved within a Prisoner’s Dilemma Game (PDG),
through Unconditional Imitation (UI) or Replicator (REP)
evolution rules, and the outcome is analyzed as a function of
k0 and the degreek of the nodes adopting cooperation. The
payoff matrix of the PDG is

P̂ =

C D
C 1 0

D 1.4 ε
,

whereε is the punishment.

Carried out using both numerical and analytical approach,
our results show that the invasion proceeds following pref-
erentially a hierarchical order in the nodes from those with
higher degree to those with lower degree, as shown in Fig. 1
in the case of scale-free topology (similar results hold on
random networks).

However, the invasion of cooperation will succeed only
when the initial cooperators are numerous enough to form a
cluster from which cooperation can spread. This implies that
the initial condition must be a suitable equilibrium between
high degree and high numerosity, which usually takes place,
when possible, at intermediate values ofk0 (see Fig. 2).
These findings have many potential real-world applications,
as they suggest that, in order to promote cooperative behav-
ior on complex networks, one should infect with cooperators
high-but-not-too-high degree nodes.

More details are available in Ref. [3].
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Figure 1: Histograms of the frequency of transitions from
defection to cooperation as a function of the ratioki/kf , be-
ing kf the degree of the agent which flipped from defection
to cooperation by imitating the agent with degreeki, for a
system on a scale free network (exponentβ = 1.6 and size
N = 2000, ε = 0.05 andk0 = 30), in case of a) UI evo-
lution rule, and b) REP updating. The cumulative frequency
of the transitions with degree ratio larger than one (i.e. the
top-down invasion acts) is≃ 98% for UI and almost70%
for REP. From Ref. [3].
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Figure 2: Final cooperator density as a function of the in-
vasion degreek0 for a system on a scale free network (size
N = 1000, exponentβ = 1.6).


