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2Dipartamento di Fisica, Universtià di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy

3JSC, FZ J̈ulich, D-52425 J̈ulich, Germany

Immunization of networks against epidemic spreading is
an important topic in complex-systems. Some applications
of this area include prevention of infectious diseases, com-
puter safety strategies against malicious viruses and infor-
mation spreading in social networks. Infectious spreadingin
a population use the network of contacts between nodes for
their spread. Accordingly, immunization corresponds to an
attack that fragments the network on which it can spread. We
propose a new method, ‘explosive immunization’ (EI) [1],
to find those nodes whose removal is most efficient in de-
stroying connectivity. Vaccinating such nodes provides an
efficient way to fragment the network and reduce the pos-
sibility of large epidemic outbreaks. While most of the
works assume that important blockers are equivalent to good
spreaders [2], our strategy specifically targets the first kind,
improving thus the results compared to other immunization
methods.

In our approach, the network consists ofN nodes, out of
which qN are vaccinated; the rest are left susceptible to the
infection. The size of an invasion will depend on the frac-
tion q of immunized nodes, the type of epidemic and its vir-
ulence. However, the maximum fraction of nodes infected
at any time will always be bounded by the relative sizeS(q)
of the largestcluster of susceptible nodes. KeepingS(q)
as small as possible will therefore ensure that epidemic out-
breaks of any type are as small as they can be for a vacci-
nation levelq. For large networks the aim of immunization
is to fragment them so thatS(q) = 0. The immunization
thresholdqc is the smallestq-value at whichS(q) = 0. Al-
thoughqc is not well defined for finite networks, it can be
estimated reliably. Below this value, the existence of a giant
cluster is unavoidable, thus the problem is reformulated in
identifying the nodes that minimizeS(q).

Contrary to most of the works, we start from an inverse
approach, where all the nodes are vaccinated so there is no
risk of an epidemic. At each step we “unvaccinate” the node
with less “blocking ability” among a finite set of randomly
chosen candidates. This is directly related to the concept of
explosive percolation proposed by Achlioptaset al. [3]. Ex-
plosive percolation has been discussed in a large number of
papers because of its very unusual threshold behavior but, to
our knowledge, our work is the first problem where it is prac-
tically used. We grade the blocking ability of a node using
two different heuristic scores, depending on which side of
the critical thresholdqc we are. The first score (forq > qc)
uses the size of the cluster that each node would join if we
add it to the network, together with a parameter proportional
to the node degree. When the giant cluster emerges, this
method grows secondary large clusters that eventually will
join the largest cluster. The cluster merging generates then
an undesired explosive behavior (see red dashed line in fig-
ure 1). In order to prevent this situation, belowqc we use a

second score that specifically forces the growth of the largest
cluster, but in a minimal way. This avoids the formation of
secondary large clusters and minimizesS(q) for q < qc (see
continuous black line in figure 1).

We tested Explosive Immunization in several random
models and real world networks. Our results are compared
with the outcome of the Collective Influence method (CI) [2]
among others. Although CI had been claimed to be the best
immunization method in the literature, EI is better in detect-
ing the critical thresholdqc (see figure 1). In general it also
provides the minimalS(q) below the threshold: although it
is not optimal everywhere in real-world networks, a com-
bination of the two scores always provides the bests global
results. In addition, our method is also extremely fast with
time complexity linear inN up to logarithms.
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Figure 1: Relative sizeS(q) of the largest clusters against
q, for a Erd̈os-Ŕenyi network withN = 106 and average
degree3.5. The red dashed curve with jumps is obtained
if EI is used with the first score for allq. The continuous
black curve is obtained using the second score forq < qc.
The blue dotted line shows the results using CI from [2]. EI
estimatesqc ≃ 0.1838.
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