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The resistivity of a normal metal is a monotonically de-
creasing function with lowering temperature. However,
when the metal contains magnetic impurities, the resistance
reaches a minimum increases at lower temperatures. This
anomalous behavior is called Kondo effect [1]. In this
case the conductance has a logarithmic dependence on the
temperature which takes place at temperatures higher than
the Kondo temperatureTK . This complex phenomenon is
caused by the highly correlations between the spin electron
in the magnetic impurity with the spin density of the elec-
trons in the metal. These interactions screen the magnetic
moment of the impurity and creates a many-body singlet
between the conducting and the localized electrons. Semi-
conductor quantum dots (QD) are able to mimic the mag-
netic impurity with the advantage of the easy tunability of
the important parameters of the problem. In fact, QDs have
spurred advances experimentally and theoretically. The typ-
ical setup in order to study transport consist of two reservoirs
(left L and rightR) connected to a quantum dot as we can
observe in Fig. 1. Each reservoir is characterized by a elec-
trochemical potentialµα and temperatureTα (α = {L,R})
and electrons travel from one reservoir to another with am-
plitudeVαk with k the wavenumber of the electron.

Our aim in this work [2] is to study the Kondo effect
in the presence of thermal gradients. In order to cover the
whole range of temperature bias we consider three differ-
ent approaches. First, we consider the perturbation analysis
of the Kondo Hamiltonian using the procedure in Ref. [3].
This method allows us to obtain an analytical result of the
relation of the Kondo temperature with the thermal biasθ,
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Figure 1: Sketch of the quantum dot system under the influ-
ence of a voltage (µL − µR) and temperature gradient (θ)
applied between the reservoirs. The system consists of two
reservoirs connected through tunnel barriers (with tunneling
amplitudesVαk) to an interacting quantum dot.

Figure 2: Normalized Kondo temperatureTK/TK0 as a
function of the thermal gradientθ/TK0 applied to the quan-
tum dot system. Blue line corresponds to the perturbative
analysis result whereas orange line showsTK derived from
the SBMFT.

whereTK0 = TK(θ = 0). In this expression we identify
three different regimes (Fig. 2): The Kondo regime where
the Kondo temperature remains approximately constant, the
scaling regime where it decreases quickly as the thermal bias
increases and the Kondo quench whereTK slowly vanishes.
In order to calculate the behavior of the Kondo temperature
in the Fermi liquid case (low temperatures), we apply the
slave boson mean field theory (SBMFT) to the Anderson
Model at large charging energies finding the same qualita-
tive results as in the previous model. In fact, theTK(θ)
curve shows the same shape even at temperature differences
outside the regime of validity (Fig. 2).

Finally, we use the truncated equation-of-motion ap-
proach with the nonequilibrium Green’s function formalism
to analyze the local density of states of the system and to
investigate their transport properties. In the voltage-driven
case, we obtain the zero bias anomaly atV = 0 and different
peaks around the electrochemical potentials of the leads. In
the thermocurrent, we observe nonlinear transport with non
trivial zeros at finite thermal biasθ. These nonlinear zeros
are explained by the presence of different peaks in the den-
sisty of states. Our results are relevant for the study of corre-
lated systems driven out of equilibrium with strong thermal
gradients.
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