Geometric renor malization of real complex networks
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Renormalization has proven to be a very powerful tool for
a systematic investigation of systems—from condensed mat-
ter to quantum field theory—as viewed at different scales. In
the field of complex networks, some topological renormal-
ization schemes based on shortest paths between nodes hav
been proposed in the past [1]. However, the collection of
shortest-path lengths, albeit a well-defined metric space,
poor source of length-based scaling factors in networks due
to their homogeneity and the small-world property.

We present empirical evidence that real-world complex
networks are invariant under geometric length scale trans-
formations when embedded in an underlying hidden met-
ric space. We prove analytically [2] that the embedding
model [3, 4] is also renormalizable in the same framework
and take it as new evidence supporting our conjecture that
hidden metric spaces underlie real networks. The congru-
ency between real networks and the geometric model en-
ables to define a multiscale unfolding of complex networks
that allows the study of their self-similarity properties.

As applications, this geometric renormalization scheme
yields a natural way of building smaller-scale replicas of
real networks while simultaneously preserving their stati
cal properties, which can be extremely useful in the study of
dynamical processes on large networks. The hidden metric
space renormalization group can also be applied to design
a new greedy routing protocol in hyperbolic space which
exploits the multiscale unfolding of complex networks in-
creasing the success rate of single-scale versions.
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Figure 1: Geometric renormalization of the Internet AS
network. The plots compare the networks obtained from the
geometric renormalization transformations. At every reno
malization step, the number of nodes is reduced by a factor
2. Top: Rescaled complementary cumulative degree dis-
tributions. Middle: Rescaled clustering coefficient spectra.
Bottom: Average prevalence as a function of the infection
rate in the SIS dynamics on the original network and its
smaller-scale replicas.



