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Renormalization has proven to be a very powerful tool for
a systematic investigation of systems–from condensed mat-
ter to quantum field theory–as viewed at different scales. In
the field of complex networks, some topological renormal-
ization schemes based on shortest paths between nodes have
been proposed in the past [1]. However, the collection of
shortest-path lengths, albeit a well-defined metric space,is a
poor source of length-based scaling factors in networks due
to their homogeneity and the small-world property.

We present empirical evidence that real-world complex
networks are invariant under geometric length scale trans-
formations when embedded in an underlying hidden met-
ric space. We prove analytically [2] that the embedding
model [3, 4] is also renormalizable in the same framework
and take it as new evidence supporting our conjecture that
hidden metric spaces underlie real networks. The congru-
ency between real networks and the geometric model en-
ables to define a multiscale unfolding of complex networks
that allows the study of their self-similarity properties.

As applications, this geometric renormalization scheme
yields a natural way of building smaller-scale replicas of
real networks while simultaneously preserving their statisti-
cal properties, which can be extremely useful in the study of
dynamical processes on large networks. The hidden metric
space renormalization group can also be applied to design
a new greedy routing protocol in hyperbolic space which
exploits the multiscale unfolding of complex networks in-
creasing the success rate of single-scale versions.
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Figure 1: Geometric renormalization of the Internet AS
network. The plots compare the networks obtained from the
geometric renormalization transformations. At every renor-
malization step, the number of nodes is reduced by a factor
2. Top: Rescaled complementary cumulative degree dis-
tributions. Middle: Rescaled clustering coefficient spectra.
Bottom: Average prevalence as a function of the infection
rate in the SIS dynamics on the original network and its
smaller-scale replicas.


