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3Department d’Enginyeria Informática i Matemátiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain

Networks are a powerful way to model and study a wide
variety of complex phenomena [1]. In the recent years, the
study of collective dynamical processes on complex net-
works has improved our understanding of many complex
systems and shed light on a wide range of physical, biolog-
ical and social phenomena including synchronization, dis-
ease spreading, transport and cascades. Of particular inter-
est in these works is the interplay between the structure of
the network and its dynamics [2]. In fact, the topology of a
network has an effect on the dynamical processes that take
place over the network, while some properties of the dynam-
ics can reveal important information on the interaction net-
work [3, 4]. Understanding the relations between structure
and dynamics can provide a solid foundation for modeling,
predicting, and controlling dynamical processes in the real
world. However, save for a few notable exceptions, the ma-
jority of the studies so far have considered a single process
on a single network, ignoring a very important ingredient:
often the components of a complex system interact through
two or more dynamics at the same time, and these dynamics
usually depend on each other in highly non-trivial ways.

In this work we propose a general framework for mod-
elling, through a multiplex network, the coupling of dynam-
ical processes of the same type (e.g. the spreading of two
coupled diseases) or of different types (for instance a syn-
chronization dynamics and a diffusion process). Moreover,
we demonstrate with a specific example that this coupling
mechanism can give rise to the emergence of complex phe-
nomena generated by the interactions between the different
dynamical processes.

The natural way to considerM interacting dynamical pro-
cesses taking place over a complex system is to use a multi-
plex network with M layers. Each layer contains the same
number of nodes, N , and there exists a one-to-one corre-
spondence between nodes in different layers, but the topol-
ogy and the very same nature of the connections at each
layer may be different. We then assign a different dynami-
cal process to each layer. Considering for simplicity the case
M = 2, we assume that the dynamics of the entire system is
governed by the following equations:{

ẋi = Fωi
(x, A[1])

ẏi = Gχi
(y, A[2])

i = 1, 2, . . . N (1)

where x = {x1, x2, . . . , xN} ∈ RN and y =
{y1, y2, . . . , yN} ∈ RN denote the states of the two dy-
namical processes, while the topologies of the two layers
are encoded in the adjacency matrices A[1] = {a[1]ij } and

A[2] = {a[2]ij } respectively, such that a[1]ij = 1 (a[2]ij = 1)
if a link exists between nodes i and j in the first (second)
layer, and a[1]ij = 0 (a[2]ij = 0) otherwise. The dynamical
evolution of the two network processes is ruled respectively
by the functions Fω and Gχ, which depend on the sets of
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Figure 1: Intertwined dynamical processes. (a) An ex-
ample of a two-layer multiplex of N = 5 nodes with neu-
ral synchronization dynamics at layer 1 (top), and transport
dynamics at layer 2 (bottom). (b) The neural activity is
described by the Kuramoto model, and the degree of syn-
chronization is measured by the order parameter r. (c) The
transport dynamics is modelled by biased random walkers.
The two dynamical processes are bidirectionally coupled, as
the natural frequencies of the oscillators at layer 1 depend
on the distribution of random walkers at layer 2 and, at the
same time, the random walkers are biased on the degree of
synchronization of the nodes at layer 1.

parameters ω and χ, so that the state xi (yi) of node i at the
first (second) layer is a function of the state x (y) and of
the topology A[1] (A[2]) of the first (second) layer. The key
ingredient that connects the two dynamical processes is pro-
vided by the nature of the correspondence between layers.
In fact, the parameter ωi in function Fωi

at layer 1 is itself a
function of time which depends on the dynamical state yi of
node i at layer 2, while the parameter χi at layer 2 depends
on the state xi of node i at layer 1. Namely, we have:{

ω̇i = f(ωi, yi)
χ̇i = g(χi, xi)

i = 1, 2, . . . N (2)

where f and g are two assigned functions.
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