Collective Phenomena Emerging from the Interactions Between Dynamical
Processes in Multiplex Networks

Vincenzo Nicosia®, Per Sebastian Skardal?, Alex Arenas®, and Vito Latora'

1School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
2De:partment of Mathematics, Trinity College, Hartford, CT 06106, USA
3Department d’Enginyeria Informatica i Matemadtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain

Networks are a powerful way to model and study a wide
variety of complex phenomena [1]. In the recent years, the
study of collective dynamical processes on complex net-
works has improved our understanding of many complex
systems and shed light on a wide range of physical, biolog-
ical and social phenomena including synchronization, dis-
ease spreading, transport and cascades. Of particular inter-
est in these works is the interplay between the structure of
the network and its dynamics [2]. In fact, the topology of a
network has an effect on the dynamical processes that take
place over the network, while some properties of the dynam-
ics can reveal important information on the interaction net-
work [3, 4]. Understanding the relations between structure
and dynamics can provide a solid foundation for modeling,
predicting, and controlling dynamical processes in the real
world. However, save for a few notable exceptions, the ma-
jority of the studies so far have considered a single process
on a single network, ignoring a very important ingredient:
often the components of a complex system interact through
two or more dynamics at the same time, and these dynamics
usually depend on each other in highly non-trivial ways.

In this work we propose a general framework for mod-
elling, through a multiplex network, the coupling of dynam-
ical processes of the same type (e.g. the spreading of two
coupled diseases) or of different types (for instance a syn-
chronization dynamics and a diffusion process). Moreover,
we demonstrate with a specific example that this coupling
mechanism can give rise to the emergence of complex phe-
nomena generated by the interactions between the different
dynamical processes.

The natural way to consider M interacting dynamical pro-
cesses taking place over a complex system is to use a multi-
plex network with M layers. Each layer contains the same
number of nodes, /N, and there exists a one-to-one corre-
spondence between nodes in different layers, but the topol-
ogy and the very same nature of the connections at each
layer may be different. We then assign a different dynami-
cal process to each layer. Considering for simplicity the case
M = 2, we assume that the dynamics of the entire system is
governed by the following equations:

.’ki = Fwi (X, A[l])
yi = GXi (ya A[2])

where x = {z1,z9,...,z2xy} € RN and y =
{y1,92,...,yn} € RN denote the states of the two dy-
namical processes, while the topologies of the two layers

i=1,2,...N (1)

are encoded in the adjacency matrices AlYl = {ag-]} and
A2l = {ag]} respectively, such that ag.} =1 (ag] =1)
if a link exists between nodes ¢ and j in the first (second)
layer, and ag] =0 (ag] = 0) otherwise. The dynamical
evolution of the two network processes is ruled respectively

by the functions F,, and G, which depend on the sets of
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Figure 1: Intertwined dynamical processes. (a) An ex-
ample of a two-layer multiplex of N = 5 nodes with neu-
ral synchronization dynamics at layer 1 (top), and transport
dynamics at layer 2 (bottom). (b) The neural activity is
described by the Kuramoto model, and the degree of syn-
chronization is measured by the order parameter . (c) The
transport dynamics is modelled by biased random walkers.
The two dynamical processes are bidirectionally coupled, as
the natural frequencies of the oscillators at layer 1 depend
on the distribution of random walkers at layer 2 and, at the
same time, the random walkers are biased on the degree of
synchronization of the nodes at layer 1.

parameters w and Y, so that the state x; (y;) of node ¢ at the
first (second) layer is a function of the state x (y) and of
the topology A (A[2]) of the first (second) layer. The key
ingredient that connects the two dynamical processes is pro-
vided by the nature of the correspondence between layers.
In fact, the parameter w; in function F,, at layer 1 is itself a
function of time which depends on the dynamical state y; of
node ¢ at layer 2, while the parameter y; at layer 2 depends
on the state x; of node 7 at layer 1. Namely, we have:

{ w; = f(wi,yi)

. i=1,2,...N 2
Xi :g(Xiaxi) @

where f and g are two assigned functions.
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